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Abstract 

In the past six years worldwide capacity for human genome 
sequencing has grown by more than five orders of magnitude, 
with costs falling by nearly two orders of magnitude over the 
same period [1], [2]. The rapid expansion in the production of 
next-generation sequence data and the use of these data in a 
wide range of new applications has created a need for 
improved computational tools for data processing. The 
Sentieon Genomics tools provide an optimized 
reimplementation of the most accurate pipelines for calling 
variants from next-generation sequence data, resulting in more 
than a 10-fold increase in processing speed while providing 
identical results to best practices pipelines. Here we 
demonstrate the consistency and improved performance of 
Sentieon’s tools relative to BWA, GATK, MuTect, and 
MuTect2 through analysis of publicly available human exome, 
low-coverage genome, and high-depth genome sequence data. 
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Introduction 

The cost of sequencing a human genome has fallen rapidly over the last decade and is now near 
$1000 for a single high-depth human genome, with annual increases in both sequencing 
efficiency in Gb per dollar and worldwide sequencing capacity consistently surpassing Moore’s 
Law [1], [2]. Importantly, data quality has also improved due to advances in the underlying 
technology and chemistry of the sequencing machines. Read lengths of the Illumina’s flagship 
X10 sequencer are now 150bp and data quality remains high across the entire read [3]. 

As the amount of available sequence data increases, efficient and accurate data analysis is 
becoming increasingly important. Next-generation sequence data are frequently being used to 
help inform economic and clinical decisions through applications such as non-invasive prenatal 
testing [4], personalized therapy including cancer immunotherapy [5]–[10], genetic diagnosis 
[11], disease gene discovery [12], [13], discovery of contributory mutations in complex disease 
[14], and discovery of important genetic traits in agriculture [15]. Due to the increased reliance 
upon next-generation sequence data for informing these decisions, the pipelines for analyzing 
these data are understandably under increasing regulatory scrutiny [16].  

While early human genome projects necessarily relied upon whole-genome de novo assembly, 
the short-read data produced by second-generation sequencers are not readily amenable to this 
method of assembly. As a result, many common data analysis pipelines involve mapping 
sequence reads to a reference genome and identifying single nucleotide variants (SNVs) and 
other variants relative to the reference [17]–[20]. Initially these methods relied upon Bayesian 
approaches to evaluate the likelihoods of mutations occurring at single-base pairs. However, 
newer haplotype-based approaches have improved accuracy and have become the industry 
standard [21]–[23]. 

Two of the most popular tools for variant detection are the GATK and MuTect [23]–[25]. The 
publications describing these tools have been cited nearly 10,000 times and both have been used 
in many high-profile research projects [14], [26], [27]. Part of the reason for their wide adoption 
is their high accuracy; these tools perform well in many benchmarks including the precisionFDA 
and ICGC-TCGA DREAM challenges [28], [29]. However, these tools do have drawbacks. The 
improvements that produce higher accuracy have also resulted in long runtimes and high 
memory usage for some tasks. Downsampling is implemented in some algorithms to help 
mitigate these issues, but is not an ideal solution as it discards valuable data, leads to increased 
run-to-run variation, and possibly results in erroneous or missing variant calls. In some steps, 
intermediate file merging is also necessary to reduce computational load. 

Due to the projected increase in the amount of available next-generation sequence data and the 
use of these data for increasingly important applications, there is a pressing need for new and 



improved software solutions for next-generation sequence data analysis. We have developed the 
Sentieon Genomics tools to address this need. The Sentieon tools provide a complete rewrite of 
the mathematical models of the Best Practices GATK, Picard, MuTect, and MuTect 2 in the 
Sentieon DNAseq, TNseq and TNHaplotyper pipelines with a focus on computational efficiency, 
accuracy, and consistency.  

 

Materials and Methods 

Benchmarking comparisons were completed using BWA 0.7.12-r1039 [30], [31], Picard tools 
1.112, GATK 3.5 [23], [24], SAMtools 1.2 [32], MuTect 1.1.5 [25], and version 201611 of the 
Sentieon Genomics tools. All commands were run on a 32 core 2.4 GHz Intel Xeon server with 
64 GB memory and 2TB dual stripped SSDs for intermediate file storage. The server was 
dedicated to benchmarking and had no other running jobs. All samples used in benchmarking are 
publicly available and are listed in Supplementary Table 1. Data from multiple lanes that were 
obtained from the Baylor Human Genome Sequencing Center were concatenated into a single 
file before analysis. Samples HG001 and HG002 were obtained from the precisionFDA platform. 

For all samples, sequence reads were aligned to the Human reference genome (UCSC hg19) with 
BWA-MEM followed by sorting and indexing using samtools or the Sentieon utility. Alignment 
summary, GC bias, base quality by sequencing cycle, base quality score distribution, and insert 
size metrics were collected and duplicate reads were removed with either Picard tools or the 
Sentieon driver. Indels were realigned and base quality was recalibrated using either the GATK 
or the Sentieon driver. For tumor-normal paired samples, joint indel realignment was performed 
using the GATK or the Sentieon driver. For germline samples, variants were called using the 
GATK UnifiedGenotyper and the GATK HaplotypeCaller or Sentieon DNAseq Haplotyper and 
Genotyper algorithms while variants were called in paired samples using MuTect and MuTect2 
or Sentieon TNseq TNsnv and TNHaplotyper algorithms. 

For the benchmarking of the joint calling, gVCF files were generated using the Sentieon pipeline 
described in Supplementary Appendix 1 with the --emit_mode gvcf option added during variant 
calling. gVCF files were then genotyped by the GATK GenotypeGVCFs and Sentieon DNAseq 
GVCFtyper across chromosome 1. Genotyping was not performed across the entire genome as 
the estimated runtime for the whole-genome analysis with the GATK was over two weeks. Since 
Sentieon’s GVCFtyper does not drop alternate alleles, GenotypeGVCFs was run with the option 
-maxAltAlleles 100 to provide comparable results.  



RTG Tools’ vcfeval 3.5.1 was used to compare variants called by Sentieon to variants called by 
the other tools. Detailed commands used during the data processing are listed in Supplementary 
Appendix 1. 

 

Results 

The Sentieon Genomics Pipeline Tools 

The Sentieon Genomics pipeline provides a suite of tools for secondary analysis of next-
generation sequence data. Currently supported pipelines are composed of optimized 
implementations of the mathematical models of the most accurate variant calling pipelines. 
Improvements in performance are achieved through optimization of the algorithms and improved 
resource management. The tools run on both Linux (RedHat/CentOS, Debian, OpenSUSE and 
Ubuntu) and OS X distributions and require no specialized hardware, additional libraries or 
complex installation procedure. Sentieon’s variant calling tools do not perform data down-
sampling and are deterministic, providing perfect run-to-run consistency [28].  

 

The Sentieon Tools Provide a 10-fold Improvement in Runtime Over the GATK, MuTect 
and MuTect2 

To test the performance of the Sentieon Genomics pipeline tools, we evaluated the runtime of 
Sentieon’s tools and the GATK, MuTect, and MuTect2 in a consistent computing environment 
using publicly available data (a complete set of samples is listed in Supplementary Table 1). 
Sentieon’s tools provide near optimal parallelization with built-in multithreading functionality. 
Unfortunately, MuTect is not multithreaded and the built-in multithreading of the GATK and 
MuTect2 are known to be suboptimal. While advanced users may use sophisticated 
parallelization methods to improve performance (such as performing operations on small 
intervals and concatenating the results), optimization, validation and testing of these methods 
require expertise, expensive human capital investment, and these methods vary in their 
effectiveness from user-to-user. Due to these costs, only built-in parallelization methods are 
tested here. Multithreaded processing of the Sentieon algorithms was accomplished using the “-
t” option while the GATK, and MuTect2 were parallelized with the “-nct” option. The full set of 
commands used in all analyses is shown in Supplementary Appendix 1. 

Prior to variant calling, sequence data were aligned to the human reference genome (UCSC 
hg19) using BWA-MEM. BWA is one of the most popular aligners for alignment of next-
generation sequence reads given its accuracy and ability to produce correct alignments at 



structural variant breakpoints. Sentieon provides an optimized implementation of BWA resulting 
in an average 1.9x speedup (range 1.0 to 3.9x, Figure 1, Supplementary Table 2), while 
producing identical alignments. 

	
Figure 1. Standard BWA-MEM and Sentieon BWA-MEM runtime comparison. 
Runtimes of the standard BWA with SAMtools sort and Sentieon BWA and sort on whole-
exome and low-coverage whole-genome and high-coverage whole-genome samples. Labels 
indicate fold improvement in runtime provided by the Sentieon implementation. 
 

Sentieon DNAseq and the GATK Best Practices Pipeline were run on seven whole-exome, 78 
low-coverage, and two whole-genome samples. Among all samples, the Sentieon DNAseq 
pipeline resulted in an average 36x (range 16 to 55x) improvement in runtime relative to the 
GATK Best Practices pipeline (Figure 2, Supplementary Table 2, Supplementary Table 3). The 
performance improvements were most notable for the indel realignment, base-quality score 
recalibration, and HaplotypeCaller variant calling stages where Sentieon’s tools improved 
runtimes by an average of 56x, 46x, and 30x, respectively. 

	

3.6×3.4×3.8×3.9×3.9×
2.6×2.5×

1.9×2.3×2.1×2.1×2.1×2.2×1.9×2.3×2.3×2.1× 2× 2× 2× 1.4× 2× 2.2× 2× 2.1×1.9×2.2×2.2× 2× 2× 2.1×2.1×

2.4×

2.3×

2×

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

R
un

tim
e 

(s
)

Standard BWA MEM Sentieon BWA MEM



	
Figure 2. DNAseq pipeline runtime comparison. 
Runtimes of the Sentieon DNAseq and GATK Best Practices pipelines on whole-exome, low-
coverage whole-genome, and high-coverage whole-genome samples for the metrics calculation 
through variant calling stages. Samples were sorted by their total number of sequenced bases. 
Labels indicate the fold improvement in runtime provided by the Sentieon tools over the GATK. 
The runtime improvement of Sentieon DNAseq over GATK ranges from 18-53x. 

To better understand the performance differences between the GATK and Sentieon tools for joint 
genotyping, we ran the GATK GenotypeGVCFs and Sentieon DNAseq GVCFtyper on 
chromosome 1 of 74 gVCF files from the 1000 Genomes Project preprocessed with the Sentieon 
DNAseq pipeline. Sentieon’s tools provided a 183x improvement in runtime relative to the 
GATK for joint genotyping (216 and 39,555 seconds for Sentieon and the GATK, respectively). 

We also measured the performance of the Sentieon TNseq TNsnv and TNhaplotyper pipelines 
relative to MuTect and MuTect2 with three tumor-normal paired samples. Sentieon’s tools 
resulted in an average speedup of 19x (range 10x to 24x) relative to MuTect2 and an average 
speedup of 42x (range 38 to 48x) relative to the single-threaded MuTect (Figure 3, 
Supplementary Table 4). Overall, the Sentieon tools provide an average 19x to 42x speedup over 
earlier implementations of the variant calling pipelines in the GATK, MuTect and MuTect2. 
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Figure 3. TNseq and TNhaplotyper runtime comparison. 
Runtimes of the Sentieon TNseq TNsnv and TNhaplotyper pipelines relative to MuTect and 
MuTect2 on whole-exome and whole-genome samples. Stages included in the plot are metrics 
calculation through variant calling. Labels indicate fold improvement in runtime provided by the 
Sentieon tools relative to MuTect and MuTect2. 
 

The Sentieon Tools Produce Results Consistent with the GATK, MuTect and MuTect2 

Using the VCF files produced in the runtime benchmark, we set out to evaluate the consistency 
of Sentieon’s tools with the GATK, MuTect, and MuTect2 using RTG Tools vcfeval. When 
interpreting the results of these experiments, it is important to note the run-to-run variation of the 
tools. While the Sentieon tools are deterministic, repeated runs of multithreaded GATK and 
MuTect2 produce slightly different results, limiting the consistency that can be achieved between 
Sentieon and these other tools [33]. MuTect downsamples sequence data deterministically while 
GATK and MuTect2 downsample sequence data randomly when running with multiple threads. 
However, even deterministic downsampling may cause additional variants to be called or lost 
relative to an identical implementation without downsampling. Here we call the results identical 
if the measured difference between the tools is on the order of the intrinsic run-to-run variation 
of the GATK observed by Weber et al. [33]. The Sentieon DNAseq pipeline produced results 
identical to the GATK best practices pipeline (average F-score 0.9996; range 0.9974 to 1.0000; 
Figure 4; Supplementary Table 5). In the joint genotyping comparison, the Sentieon tools 
produced results identical to the GATK (Supplementary Table 6). While the Sentieon TNseq 
TNsnv and TNhaplotyper pipelines produced results identical to MuTect and MuTect2 (Average 
F-score 0.9994 and 0.9920 for MuTect and MuTect2, respectively; Supplementary Table 7). 
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These results indicate that the Sentieon DNAseq and TNseq pipelines provide a drop-in 
replacement for the best-practices pipelines with results within the run-to-run variation of the 
tools. 

	
Figure 4. Consistency of Sentieon DNAseq and the GATK Best Practices. 
F1-Score between the Sentieon DNAseq and GATK Best Practices variant calls is shown for 
combined SNPs and Indels and each separately. F1-score was measured using RTG tools 
vcfeval. 
 

Discussion 

In this manuscript, we present the Sentieon DNAseq and TNseq pipelines. The Sentieon tools 
provide computationally efficient, multithreaded, deterministic variant calling from germline 
samples and tumor-normal pairs with results identical to the GATK, MuTect and MuTect2 while 
providing a greater than 10-fold improvement in total runtime. As it provides identical results, 
the Sentieon tools can function as a drop-in replacement for the GATK, MuTect or MuTect2 
resulting in cost-savings for researchers and clinicians. The lack of down-sampling enables high-
depth sequencing for increased accuracy, the robust implementation enables joint genotyping of 
100,000s of files simultaneously without intermediate file merging, and the algorithmic 
determinism provides the consistency required for medical applications. As next-generation 
sequence data is produced at an increasing rate and more frequently finds use in important 
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economic and clinical applications, the Sentieon Genomics pipeline tools provide a means to 
process this data with accuracy, efficiency and consistency. 
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